• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, G. (Wang, G..) | Yuan, G. (Yuan, G..) | Hu, Z. (Hu, Z..) | Chi, Y. (Chi, Y..) | Jia, Q. (Jia, Q..) | Qiao, J. (Qiao, J..)

Indexed by:

EI Scopus SCIE

Abstract:

Deep belief network (DBN) is an effective deep learning model, which can learn the complex data by extracting features hierarchically. However, the successful application of DBN depends on the suitable size of the structure (the number of hidden neurons), which is still an open problem. Currently, the network structure size is basically determined by experience with a time-consuming process. In this article, a complexity-based structural optimization (CBSO) algorithm, based on multiobjective ordinal optimization (MOO), is developed for designing the DBN structure. First, the problem formulation of structural optimization of DBN is given, where the multiple objectives are to minimize the fitting error and complexity. Second, the lower bound for alignment probability in optimizing DBN structure is developed according to MOO. Finally, an effective method to maximize the probability of correct select is given to pursue the good tradeoff between the complexity and the performance. The performance of proposed CBSO algorithm is demonstrated via predicting and controlling water quality of wastewater treatment process (WWTP) using the CBSO-DBN-based model predictive control (MPC) strategy. The simulation results show that the resulting CBSO-DBN can find the better structure design by using CBSO algorithm with smaller fitting error and limited computational complexity, and thereby achieve the better performance in WWTP than its peers. Especially, the CBSO-DBN-MPC improves the control accuracy by 76.16% and computational complexity by 50.45%, respectively. IEEE

Keyword:

Optimization Training Neurons Informatics probability of correct selection (PCS) Process control Wastewater treatment structure design wastewater treatment process (WWTP) Random variables multiobjective ordinal optimization (MOO) Deep belief network (DBN)

Author Community:

  • [ 1 ] [Wang G.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yuan G.]Youcaiyongyong I. T. Company, Ltd., Rizhao Ecommerce Industrial Park, Rizhao, China
  • [ 3 ] [Hu Z.]College of Mechanical and Architectural Engineering, Taishan University, Taian, China
  • [ 4 ] [Chi Y.]School of Economics and Management, Beijing University of Technology, Beijing, China
  • [ 5 ] [Jia Q.]Department of Automation, BNRist, Center for Intelligent and Networked Systems (CFINS), Tsinghua University, Beijing, China
  • [ 6 ] [Qiao J.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

IEEE Transactions on Industrial Informatics

ISSN: 1551-3203

Year: 2024

Issue: 4

Volume: 20

Page: 1-9

1 2 . 3 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:384/10586898
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.