Indexed by:
Abstract:
This study first systematically investigated selective Li+ extraction from Mg2+-rich brines with Na+ and K+ using ionic liquid (IL) based synergistic extractant (SE) systems from molecular mechanisms to extraction performances. The ternary combination 1-allyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([AMIM][Tf2N]), tri-iso-butyl phosphate (TIBP) and dichloromethane (DCM), i.e., [AMIM][Tf2N]-TIBP-DCM was selected as a suitable SE from the diverse organic phosphorus ligands, ILs and diluents. The single-stage Li+ extraction efficiency was as high as 96.87%, and selectivities of βLi+/Mg2+, βLi+/Na+, and βLi+/K+ were up to 1161.94, 76.74, and 1263.46, respectively. It was found that Li+ is extracted from the aqueous phase to organic phase in Li+-4TIBP-[Tf2N] complex. The molecular-level mechanism was identified as the multi-type interaction formed between metal ions and [AMIM][Tf2N]-TIBP to destroy the hydration of metal ions through quantum chemical (QC) calculations. The work proposes valuable theoretical guidance to develop novel IL-related SE systems for the high-efficiency Li+ extraction from salt lake brines. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Chemical Engineering Science
ISSN: 0009-2509
Year: 2024
Volume: 290
4 . 7 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: