Indexed by:
Abstract:
Reduced graphene oxide supported Fe/Ni nanocomposites were prepared for the rapid and effective adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) by using liquid phase reduction method. The morphological characterization showed that the spherical Fe/Ni bimetallic nanoparticles with the size of 80~150nm were successfully inserted into the graphene sheets and mainly distributed at the edges and folds of the graphene sheets. The agglomeration of Fe/Ni nanoparticles decreased significantly. XRD patterns and FTIR analysis showed nZVI nanoparticles were successfully embedded into graphene through Fe-O bond, Fe/Ni bimetallic nanoparticles had poor crystallinity and amorphous iron oxide which covered the outer layer of nanoparticles. The effects of different preparation conditions such as carbon iron ratio, nickel loading and reduction degree of graphene oxide on the removal of 2,4-DCP were discussed. The optimum preparation conditions of the Fe/Ni@rGO composites are as follows: the mass ratio of graphene to Fe is 1:2, the Ni loading is 5%, and the molar ratio of NaBH4to Fe2+ is 5:1. The adsorption and dechlorination perfermance of 2,4-DCP by nZVI, Fe/Ni, Fe@rGO composites and Fe/Ni@rGO composites were compared and analyzed. The results showed that the removal efficiency of 2,4-DCP by five materials followed the sequence: Fe/Ni@rGOcomposites>Fe/Ni>rGO>Fe@rGOcomposites>nZVI. However, the cycle test and storage stability test showed: compared with Fe/Ni bimetallic, Fe/Ni@rGO composites had stable reactivity activity and high reruse value. The results demonstrated the removal mechanism of 2,4-DCP by Fe/Ni@rGO composites was the synergistic effect of adsorption and dechlorination. © 2023 Chinese Society for Environmental Sciences. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
China Environmental Science
ISSN: 1000-6923
Year: 2023
Issue: 12
Volume: 43
Page: 6352-6362
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: