Abstract:
近年来,基于深度学习的脑功能连接分类方法成为脑科学中的研究热点。为了进一步获得具有判别性的大脑连接特征,进而提升脑功能连接的分类准确率,本文提出了一种基于对比学习的卷积神经网络脑功能连接分类方法。对比学习是一种特殊的自监督学习框架,通过在特征空间中对正样本与负样本进行对比,充分挖掘不同样本间的差异性。首先,提出一种融合多视角信息的对比学习框架,采用实例-实例的对比学习挖掘样本间的差异性,并利用实例-原型的对比学习挖掘样本与样本簇之间的差异性。其次,将多视角对比学习与目标分类任务联合训练,增强所学特征的判别性,提升卷积神经网络的分类性能。本文使用ABIDE-I数据集进行实验,结果表明,所提方法能够使脑功能连接的分类效果得到有效提升,并且能够对重要的功能连接与脑区进行准确识别。
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2023
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: