• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhao, S. (Zhao, S..) | An, T. (An, T..) | Wang, Q. (Wang, Q..) | Qin, F. (Qin, F..)

Indexed by:

EI Scopus SCIE

Abstract:

For insulated gate bipolar transistor (IGBT) modules using wire bonding as the interconnection method, the main failure mechanism is cracking of the bonded interface. Studying the mechanical properties of the bonded interface is crucial for assessing the reliability of IGBT modules. In this paper, first, shear tests are conducted on the bonded interface to test the bonded interface’s strength. Then, finite element–cohesive zone modeling (FE-CZM) is established to describe the mechanical behavior of the bonded interface. A novel machine learning (ML) architecture integrating a convolutional neural network (CNN) and a long short-term memory (LSTM) network is used to identify the shape and parameters of the traction separation law (TSL) of the FE-CZM model accurately and efficiently. The CNN-LSTM architecture not only has excellent feature extraction and sequence-data-processing abilities but can also effectively address the long-term dependency problem. A total of 1800 sets of datasets are obtained based on numerical computations, and the CNN-LSTM architecture is trained with load–displacement (F–δ) curves as input parameters and TSL shapes and parameters as output parameters. The results show that the error rate of the model for TSL shape prediction is only 0.186%. The performance metric’s mean absolute percentage error (MAPE) is less than 3.5044% for all the predictions of the TSL parameters. Compared with separate CNN and LSTM architectures, the proposed CNN-LSTM-architecture approach exhibits obvious advantages in recognizing TSL shapes and parameters. A combination of the FE-CZM and ML methods in this paper provides a promising and effective solution for identifying the mechanical parameters of the bonded interfaces of IGBT modules. © 2024 by the authors.

Keyword:

machine learning IGBT cohesive zone model bonded interface mechanical property traction-separation relations

Author Community:

  • [ 1 ] [Zhao S.]Institute of Electronics Packaging Technology and Reliability, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Zhao S.]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [An T.]Institute of Electronics Packaging Technology and Reliability, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [An T.]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Wang Q.]Institute of Electronics Packaging Technology and Reliability, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Wang Q.]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 7 ] [Qin F.]Institute of Electronics Packaging Technology and Reliability, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China
  • [ 8 ] [Qin F.]Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Materials

ISSN: 1996-1944

Year: 2024

Issue: 5

Volume: 17

3 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Affiliated Colleges:

Online/Total:565/10582852
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.