Indexed by:
Abstract:
Aeolian sand serves as the primary filling material for highway and railway in the desert area of Inner Mongolia, China. Usually, aeolian sand subgrade is stable in the natural state. Nevertheless, the infiltration caused by rainfall events disrupts the original balance within the subgrade. The hydraulic properties of aeolian sand subgrade change substantially in a short period, which results in a decrease in shear strength and subsequent deformation or landslide of the subgrade. Based on the analysis of soil properties and structural characteristics of aeolian sand subgrade, a prediction model for rainfall infiltration depth considering soil properties and rainfall levels of aeolian sand subgrade was proposed based on the linear approach of soil water characteristic curves (SWCCs). This study further used the aforementioned prediction model to predict the infiltration depth of aeolian sand with three different dry densities under an extreme rainfall event and compared it with numerical simulation results to verify the applicability of the prediction model. This study can provide a theoretical basis for the study of the hydraulic behavior of aeolian sand subgrade soil. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2366-2557
Year: 2024
Volume: 447
Page: 363-374
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: