• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ma, G. (Ma, G..) | Lin, T. (Lin, T..) | Cao, P. (Cao, P..) | Oger, P. (Oger, P..) | Dong, K. (Dong, K..) | Miao, L. (Miao, L..) | Zhang, L. (Zhang, L..)

Indexed by:

Scopus SCIE

Abstract:

Archaeal NurA protein plays a key role in producing 3′-single stranded DNA used for homologous recombination repair, together with HerA, Mre11, and Rad50. Herein, we describe biochemical characteristics and roles of key amino acid residues of the NurA protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-NurA). Tba-NurA possesses 5′–3′ exonuclease activity for degrading DNA, displaying maximum efficiency at 45 °C–65 °C and at pH 8.0 in the presence of Mn2+. The thermostable Tba-NurA also possesses endonuclease activity capable of nicking plasmid DNA and circular ssDNA. Mutational data demonstrate that residue D49 of Tba-NurA is essential for exonuclease activity and is involved in binding ssDNA since the D49A mutant lacked exonuclease activity and reduced ssDNA binding. The R96A and R129A mutants had no detectable dsDNA binding, suggesting that residues R96 and R129 are important for binding dsDNA. The abolished degradation activity and reduced dsDNA binding of the D120A mutant suggest that residue D120 is essential for degradation activity and dsDNA binding. Additionally, residues Y392 and H400 are important for exonuclease activity since these mutations resulted in exonuclease activity loss. To our knowledge, it is the first report on biochemical characterization and mutational analysis of the NurA protein from Thermococcus. © 2024 Institut Pasteur

Keyword:

NurA protein DNA repair Exonuclease Hyperthermophilic archaea Endonuclease

Author Community:

  • [ 1 ] [Ma G.]College of Environmental Science and Engineering, Yangzhou University, China
  • [ 2 ] [Lin T.]College of Environmental Science and Engineering, Yangzhou University, China
  • [ 3 ] [Cao P.]Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
  • [ 4 ] [Oger P.]Université de Lyon, INSA de Lyon, CNRS UMR, Lyon, 5240, France
  • [ 5 ] [Dong K.]College of Environmental Science and Engineering, Yangzhou University, China
  • [ 6 ] [Miao L.]College of Environmental Science and Engineering, Yangzhou University, China
  • [ 7 ] [Zhang L.]College of Environmental Science and Engineering, Yangzhou University, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Research in Microbiology

ISSN: 0923-2508

Year: 2024

Issue: 5-6

Volume: 175

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:466/10601910
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.