• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Xiao-Dong (Yang, Xiao-Dong.) (Scholars:杨晓东) | Xie, Bao-Yin (Xie, Bao-Yin.) | Zhang, Wei (Zhang, Wei.) | Hu, Quan (Hu, Quan.)

Indexed by:

Scopus SCIE

Abstract:

In this study, two discretization numerical methods, modal discretization and spatial discretization methods, were proposed and compared when applied to the gyroscopic structures. If the distributed gyroscopes are attached, the general numerical methods should be modified to derive the natural frequencies and complex modes due to the gyroscopic effect. The modal discretization method can be used for cases where the modal functions of the base structure can be expressed in explicit forms, while the spatial discretization method can be used in irregular structures without modal functions, but cost more computational time. The convergence and efficiency of both modal and spatial discretization techniques are illustrated by an example of a beam with uniformly distributed gyroscopes. The investigation of this paper may provide useful techniques to study structures with distributed inertial components.

Keyword:

spatial discretization modal discretization complex modes gyroscopic structure numerical methods

Author Community:

  • [ 1 ] [Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Xie, Bao-Yin]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Wei]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Quan]Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China

Reprint Author's Address:

  • 杨晓东

    [Yang, Xiao-Dong]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED SCIENCES-BASEL

Year: 2020

Issue: 1

Volume: 10

2 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:699/10648735
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.