Indexed by:
Abstract:
A tunnel boring machine (TBM) generates rock chips during excavation, which are crucial for assessing surrounding rock integrity, enhancing excavation efficiency, and evaluating cutter wear. However, traditional methods struggle to identify small rock chips, chips submerged in soil or water, and chips in stacked states. This paper proposes a convolutional neural network (CNN)-based method for directly recognizing the particle size distribution from rock chip images. A dataset of 2520 rock chip images representing 84 particle-size distributions was collected in a laboratory environment. By comparing various CNN architectures and hyperparameters, an optimal model was obtained with a mean absolute error (MAE) of 1.66 × 10−2 and R2 of 0.923 on the test set. The results demonstrate that the proposed method enables the real-time recognition of particle size distribution using rock chip images, which has the potential to significantly improve intelligent auxiliary excavation technology in TBMs. © 2024 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Automation in Construction
ISSN: 0926-5805
Year: 2024
Volume: 163
1 0 . 3 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: