Indexed by:
Abstract:
In order to improve the safety of spacecraft, the research on artificial neural network and digital twin technology based on, to our best knowledge, a novel fiber Bragg grating (FBG) sensor array is proposed for intelligent sensing monitoring of spacecraft on-orbit collisions. Femtosecond FBG arrays were fabricated on the novel oxide-doped fiber by point-by-point writing technique. The femtosecond FBG is analyzed using the time-dependent perturbation theory of quantum mechanics. The FBG array can achieve high-temperature measurement of 1100 °C and large strain measurement of 15000 µε. The sensing arrays were deployed on the surface of the spacecraft. Constructed the multi-layer perceptron neural network structure and convolutional neural network structure. 1200 samples were trained. Conducted model accuracy testing. The accuracy rate is above 98%, and accuracy verification has been implemented. The digital twin model was designed based on various data such as strain and temperature of the spacecraft structure under impact monitored by FBG sensors. A precise mapping has been formed between the physical entities of spacecraft and digital twins. Empower spacecraft with functions such as self-monitoring, judgment, and response. To ensure the stable and safe operation of spacecraft. © 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
Keyword:
Reprint Author's Address:
Email:
Source :
Optics Express
ISSN: 1094-4087
Year: 2024
Issue: 8
Volume: 32
Page: 13065-13081
3 . 8 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: