Indexed by:
Abstract:
Clustering is one of the most fundamental tools in artificial intelligence, machine learning, and data mining. In this paper, we follow one of the recent mainstream topics of clustering, Sum of Radii (SoR), which naturally arises as a balance between the folklore k-center and k-median. SoR aims to determine a set of k balls, each centered at a point in a given dataset, such that their union covers the entire dataset while minimizing the sum of radii of the k balls. We propose a general technical framework to overcome the challenge posed by varying radii in SoR, which yields fixed-parameter tractable (fpt) algorithms with respect to k (i.e., whose running time is f(k)ploy(n) for some f). Our framework is versatile and obtains fpt approximation algorithms with constant approximation ratios for SoR as well as its variants in general metrics, such as Fair SoR and Matroid SoR, which significantly improve the previous results. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2159-5399
Year: 2024
Issue: 18
Volume: 38
Page: 20666-20673
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: