• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Sun, J.-H. (Sun, J.-H..) | Su, N.-J. (Su, N.-J..) | He, Z.-Q. (He, Z.-Q..) | Jia, R.-X. (Jia, R.-X..) | Liu, Y. (Liu, Y..) | Lin, F.-K. (Lin, F.-K..) | Ka, T.A. (Ka, T.A..)

Indexed by:

EI Scopus SCIE

Abstract:

Glass fiber reinforce polymer (GFRP) bars have better durability than traditional steel bars, but there are few studies on their long-term performance in actual service environments especially the marine environment. To investigate the durability of GFRP bars used in cross-sea bridges, this research delves into the performance of 132 such bars, spanning diameters of 10, 12, 16, and 25 mm, in an environment that closely mimics real-world condition. The GFRP bars, encapsulated in concrete, were submerged in seawater solution, maintained at either room temperature or 60°C, for periods spanning from 0 to 183 days. Then the tensile strength and elastic modulus degradation of GFRP bars were investigated by tensile tests. Scanning electron microscope (SEM) was also used to analyze the micro-degradation mechanism of GFRP bars. In addition, this paper compares the four existing models for predicting long-term mechanical properties of GFRP bars with the experimental data, so as to determine the formulas and methods to be used in the design. The result shows that the elastic modulus of GFRP bars after 183 days of immersion in concrete pore solution was almost unchanged while the tensile strength decreased significantly. Among them, the tensile strength of 10 mm diameter GFRP bars decreased by 41.52 %, after 183 days of immersion at high temperature (60°C). The SEM method revealed that the main cause of such phenomena was the weakening of the bond between the fibers and matrix, which led to a decrease in the interface property. Finally, by fitting and comparing the relationship between the test data and the existing prediction models for the long-term mechanical properties of GFRP bars, the residual tensile strength of GFRP bars used in the actual project of Yanzhou Bridge for 100 years was predicted according to the optimal prediction model, i.e. the Serb model, and the results showed that the residual strength of GFRP bars is able to meet the current standard requirement. © 2024 The Authors

Keyword:

Concrete-encapsulated Prediction model GFRP bar Durability Seawater

Author Community:

  • [ 1 ] [Sun J.-H.]The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, 100 Pingleyuan Road, Beijing, 100124, China
  • [ 2 ] [Su N.-J.]Poly Changda Engineering Co., Ltd., No. 942 Middle Guangzhou Avenue, Tianhe District, Guangdong, Guangzhou, 510620, China
  • [ 3 ] [He Z.-Q.]Poly Changda Engineering Co., Ltd., No. 942 Middle Guangzhou Avenue, Tianhe District, Guangdong, Guangzhou, 510620, China
  • [ 4 ] [Jia R.-X.]The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, 100 Pingleyuan Road, Beijing, 100124, China
  • [ 5 ] [Liu Y.]Research Institute of Urbanization and Urban Safety, School of Civil and Resource Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
  • [ 6 ] [Lin F.-K.]CCCC Highway Bridges National Engineering Research Centre Co. Ltd., No. 23 Huangsi Street, Xicheng District, Beijing, 100120, China
  • [ 7 ] [Ka T.A.]Research Institute of Urbanization and Urban Safety, School of Civil and Resource Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Case Studies in Construction Materials

ISSN: 2214-5095

Year: 2024

Volume: 20

6 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:351/10642520
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.