• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Y. (Yang, Y..) | Chen, L. (Chen, L..) | Wu, S. (Wu, S..)

Indexed by:

EI Scopus SCIE

Abstract:

The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model’s generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model’s discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely “Abdominal and Direct Fetal ECG Database” and “Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations”, resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper’s model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols. © 2024 by the authors.

Keyword:

convolutional neural networks bidirectional long short-term memory fetal electrocardiogram signal extraction PatchGAN CycleGAN

Author Community:

  • [ 1 ] [Yang Y.]Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Chen L.]Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Wu S.]Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Sensors

ISSN: 1424-8220

Year: 2024

Issue: 9

Volume: 24

3 . 9 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:569/10514523
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.