Indexed by:
Abstract:
Consumer behavior has changed due to digitization. Online shoppers now refer to user reviews containing comprehensive data produced in real-time, which can be used to determine users’ needs. This paper combines Kansei engineering and natural language processing techniques to extract information on users’ needs from online reviews and provide guidance for subsequent product improvements and development. A crawler tool was used to collect a large number of online reviews for a target product. Frequency analysis was then applied to the text to filter out the product components worth analyzing. The results were categorized and aggregated by experts before sentiment analysis was performed on statements containing the selected adjectives. Finally, the user needs identified could be inputted to Kansei engineering for further product design. This paper verifies the merit of the above method when applied to the mountain bike product category on Amazon. The method proved to be a quick and efficient way to attain accurate product evaluations from end-users and thus represents a feasible approach to intelligently determining user preferences. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Keyword:
Reprint Author's Address:
Email:
Source :
Personal and Ubiquitous Computing
ISSN: 1617-4909
Year: 2024
Issue: 3-4
Volume: 28
Page: 615-627
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: