Indexed by:
Abstract:
Phononic crystals that are artificially engineered structures have recently been introduced for vibration energy harvesting and sensing applications due to their unique features of band gaps and wave propagation control. Conventional energy harvesters made of phononic crystals are mainly designed for acoustic energy harvesting at a high-frequency vibration source (i.e., kHz levels). In this work, a defect-mode-induced energy harvester is designed for low-frequency excitations in the range of 0–300 Hz. The entire system that is a locally resonant phononic crystal (LRPC) plate with line defect patterns is consisted of elastic-wrapped core scatterers periodically embedded in epoxy resin. A two-dimensional (2D) three-component unit cell structure is arranged on the plate and the band gap property is analyzed to optimize the geometric parameters. Defects are then introduced to the LRPC plate with a 7 × 7 point array for analysis. In addition, numerical and experimental studies are conducted to investigate the performance of energy harvesting when attaching a piezoelectric patch on the defect points. The results demonstrate that the proposed LRPC vibration energy harvester having a line defect mode (with continuous or alternate points) shows good performance in energy harvesting, in which a peak power output of 42.72 mV can be achieved under 10 m/s2 and 252 Hz. The performance is almost 6 times more than that of the single-point defect model under the same excitation conditions. The present LRPC-type energy harvester with a line defect mode is more suitable for energy harvesting for low-frequency and broadband conditions. © 2022 The Author(s)
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Infrastructure Intelligence and Resilience
Year: 2022
Issue: 1
Volume: 1
Cited Count:
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: