Indexed by:
Abstract:
Dissolved organic matter (DOM) plays an important role in regulating the fate of mercury (Hg), e.g., mobility, bioavailability, and toxicity. Clarifying the role of DOM in binding Hg in the treatment processes of sewage sludge is important for relieving Hg contamination risks in land applications. However, the impacts of DOM on Hg binding in sewage sludge are still unclear. In this study, we investigated the evolution of Hg and its speciation in full-scale sludge anaerobic digestion (AD) with thermal hydrolysis. The role of DOM in binding Hg(II) was further analyzed. The results showed that AD with thermal hydrolysis led to an increase in the Hg content in the sludge (from 3.72 +/- 0.47 mg/kg to 10.75 +/- 0.16 mg/kg) but a decrease in Hg mobility (the mercury sulfide fraction increased from 60.56 % to 79.78 %). Further adsorption experiments revealed that at equivalent DOM concentrations, DOM with a low molecular weight (MW <1 kDa) in activated sludge, DOM with a medium molecular weight (1 kDa 5 kDa) in both anaerobically digested sludge and conditioned sludge showed high binding amounts of Hg (II), with 1372.54, 535.28, 942.09 and 801.51 mg Hg/g DOM, respectively. Parallel factor analysis (PARAFAC) and fluorescence quotient (FQ) results showed that tryptophan-like and tyrosine-like substances had high binding affinities for Hg(II). Furthermore, X-ray photoelectron spectroscopy (XPS) indicated that the reduced organic sulfur contained in the DOM was potentially bound to Hg through the interactions of Hg -S and Hg -O. These results indicated that DOM may play special roles in regulating Hg speciation. The association between DOM and Hg(II), such as the significant positive correlation ( p < 0.05) between the dissolution rate of Hg(II) and release of tryptophan-like substances during thermal hydrolysis, suggested the potential way for removing Hg from sludge.
Keyword:
Reprint Author's Address:
Email:
Source :
WATER RESEARCH
ISSN: 0043-1354
Year: 2024
Volume: 259
1 2 . 8 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: