Indexed by:
Abstract:
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment
Keyword:
Reprint Author's Address:
Source :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
Year: 2024
Volume: 938
9 . 8 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: