Indexed by:
Abstract:
To improve shear capacity, as well as reduce on-site casting and steel consumption, a novel Y-shaped perfobond rib (Y-PBL) shear connector with ultra-high-performance concrete (UHPC) grout was proposed. The shear behavior of the Y-PBL shear connector was investigated by six groups of pushout specimens. Their failure modes, load-slip curves, load-separation curves, strain analysis, and shear transfer mechanisms were discussed. Subsequently, finite-element analysis (FEA) models were established to study the effect of parameters on the shear behavior of the Y-PBL shear connector, as well as to compare the shear capacity contributions with straight-shaped PBL (S-PBL) shear connectors. Analytical models were proposed to predict the shear capacity of the Y-PBL shear connector. The results reveal that the proposed Y-PBL shear connector has superior shear capacity and stiffness. The contribution of the perforating rebar is minor compared with the end-bearing effect of UHPC. The analytical predictions agree well with the experimental and FEA results. This study can be used to guide the design and application of the Y-PBL shear connector in steel-concrete composite bridges. © 2024 American Society of Civil Engineers.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Structural Engineering (United States)
ISSN: 0733-9445
Year: 2024
Issue: 9
Volume: 150
4 . 1 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: