Abstract:
浮动车GPS数据作为交通信息处理的基础,随着被监控车辆数量的高速增长,产生了海量GPS数据,对地图匹配提出了挑战.为了解决传统匹配方法难以满足匹配效率和精度的不足,提出一种针对海量GPS数据的实时并行地图匹配算法,能够同时保证较高匹配精度和运算效率.为构建一种面向实时数据流的高效、准确实时地图匹配算法,首先通过引入速度、方向综合权重因子对依赖历史轨迹的离线地图匹配算法进行重构,进而引入Spark Streaming分布式计算框架,实现地图匹配算法的实时、并行运算,大幅提升实时地图匹配效率.实验结果表明,该算法在复杂路段的匹配准确率较常规拓扑匹配算法提高10%以上,整体匹配准确率达到95%以上;在匹配效率方面,较同等数量的单机服务器效率可提高4倍左右.实验结果表明,该算法在由11台机器组成的计算集群上实现8 000万个GPS数据点的实时地图匹配,证明了该算法可以完成城市地区的实时车辆匹配.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机应用研究
ISSN: 1001-3695
Year: 2024
Issue: 5
Volume: 41
Page: 1338-1342
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 19
Affiliated Colleges: