• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Zhixing (Li, Zhixing.) (Scholars:邢李志) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Nitrate is a byproduct of the anaerobic ammonium oxidation (anammox) process and is related to its electron transfer. However, little is known about the influence of nitrate on the anammox process. In this work, the biphasic effect of exogenous nitrate on the anammox process was investigated in an upflow biofilter (UBF) reactor with ammonium as the sole electron donor. The responses of anammox to increased nitrate were analyzed by one-way ANOVA test and found to be significantly different under a constant and decreased nitrite condition (p < 0.01). With a single increase in nitrate and constant ammonium and nitrite in the influent, the total nitrogen removal rate (TNRR) of anammox was uninhibited, but stoichiometry deviated and nitrate production always showed a linear decrease. In contrast, anammox exhibited a range of activity with constant ammonium and simultaneously increased nitrate and decreased nitrite in the influent, including a continuous reduction of TNRR, a nonpersistent ammonium overconsumption and a pronounced nonlinear response of nitrate production. Correlation analysis shows that the lack of ammonium overconsumption was accompanied by the disappearance of nitrate underproduction. Kinetic models of product formation were effectively used to explore the nitrate production behavior of anammox subjected to increased nitrate, and the metabolite of nitrate was divided into a growth negative coupling type and growth (partial) coupling type under a constant and decreased nitrite condition, respectively. These findings collectively suggest that nitrate has a biphasic effect on the anammox process and is correlated with the availability of nitrite. (C) 2019 Elsevier Ltd. All rights reserved.

Keyword:

Stoichiometry Anammox Nitrate Kinetic modeling Biphasic behavior

Author Community:

  • [ 1 ] [Li, Zhixing]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CHEMOSPHERE

ISSN: 0045-6535

Year: 2020

Volume: 238

8 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:138

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:1022/10532261
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.