Indexed by:
Abstract:
The Gurson-Tvergaard-Needleman (GTN) model has been improved to extend its application for high strain rate loading and assessed by using the Taylor impact process of 7xxx aluminum alloys. The existing modification method based on independent shear damage variables has been integrated into the enhanced GTN model to assess shear fracture. In addition, the effects of strain rate hardening, temperature softening, and viscosity resistance terms have been taken into account in the constitutive equation to accurately depict the material's deformation behavior under high strain rates. A series of quasi-static mechanical tests and Split Hopkinson Pressure Bar (SHPB) tests with strain rates ranging from 1000s(-1) similar to 5000 s(-1) were conducted on 7A52-T6 alloy and 7A62-T6 alloy. The Taylor impact experiments showed that the mushrooming deformation and shear fractures occurred as the impact velocity increased. Both the 7A52 and 7A62 alloys exhibited fracture characteristics of shear and void nucleation, and the voids only grew slightly after formation. The predicted fracture patterns in Taylor impact and the evolution trend of material strength using the enhanced GTN model are consistent with the experimental results.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPUTERS & STRUCTURES
ISSN: 0045-7949
Year: 2024
Volume: 301
4 . 7 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: