Indexed by:
Abstract:
With the rapid demand for high-performance energy storage systems, lithium-ion batteries (LiBs) have emerged as the predominant technology in various applications. However, ensuring the safety and reliability of these batteries remains a critical challenge. Ultrasound-based detection, as a non-destructive and effective method for monitoring the internal state of LiBs, has gradually emerged as a valuable tool to enhance battery safety, reliability, and performance. This paper provides a review of recent advancements in the field of acoustic detection for LiBs, delving into the fundamental principles and mechanisms governing the propagation of acoustic signals within these batteries. This paper reviews the correlation between these acoustic signals and the operational status of the battery, as well as the association with internal side reactions during abnormal conditions. The strengths and limitations of current ultrasound-based detection methods are emphasized, offering insights to guide researchers, engineers, and industry professionals in advancing the field. The review aims to foster the development of robust ultrasound-based detection solutions for the next generation of energy storage systems. © 2024 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Ultrasonics
ISSN: 0041-624X
Year: 2024
Volume: 142
4 . 2 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: