Abstract:
在运动想象任务中,传统卷积神经网络难以准确表达大脑多区域协同神经活动;图卷积网络(GCN)能够在图数据中考虑节点(脑区)间的连接和关系,适于表示不同脑区的协同任务,为此提出融合注意力的滤波器组双视图GCN(AFB-DVGCN).由滤波器组构建双分支网络,提取不同频段的时域和空域信息;采用双视图图卷积空间特征提取方法实现信息互补;利用有效通道注意力机制增强特征和捕捉不同特征图的交互信息,以提高分类准确率.在公开数据集BCI Competition IV-2a和OpenBMI上的验证结果表明,AFB-DVGCN的分类性能良好,其分类准确率显著高于对比网络的分类准确率.
Keyword:
Reprint Author's Address:
Email:
Source :
浙江大学学报(工学版)
ISSN: 1008-973X
Year: 2024
Issue: 7
Volume: 58
Page: 1326-1335,1356
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: