Indexed by:
Abstract:
Lots of experiments observe the size-dependent phenomena of concrete mechanical behaviors. In this paper, the micropolar theory is adopted to describe the size effects by introducing two size-related parameters into their constitutive equations, named coupling number N and characteristic length l. A micropolar damage model is built for size-dependent concrete fracture problems utilizing the bond-based peridynamic (PD) idea. That is, the material damage and fracture behaviors are determined by the local damage factors of the PD bonds. Then, the tensile strength of a concrete specimen is numerically estimated by the PD differential operator (PDDO) method. The influences of the size parameters N and l on the tensile strength are studied. By comparing with the transformed Bazant size-effect law and the fitting error analysis, the reasonable values of N and l are determined for a certain reinforced concrete composite. Finally, by using the determined micropolar damage model, the crack propagation paths in concrete members are numerically simulated.
Keyword:
Reprint Author's Address:
Email:
Source :
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
ISSN: 0955-7997
Year: 2024
Volume: 167
3 . 3 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: