Indexed by:
Abstract:
The utilization of spatial curve shield tunnelling has now emerged as the prevailing approach in shield engineering, giving rise to a more intricate ground influence. This paper establishes a three-dimensional computational model based on the elastic pass solution and integrates existing research to derive a comprehensive analytical solution for the additional stresses induced in the ground during shield tunnel construction under complex spatial curve conditions formed by connecting two simple line segments. The theoretical approach proposed in this study is subsequently validated through the utilization of a sophisticated numerical model and the approximate solution derived from previous research. Based on the yaw tunneling phenomenon of a shield in spatial curves, this paper independently analyzes the additional stress field of the soil by incorporating relevant yaw parameters and ultimately derives a series of fundamental principles for shield tunneling in space curves. The findings presented in this paper have significant implications for a wide range of shield tunneling projects.
Keyword:
Reprint Author's Address:
Email:
Source :
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
ISSN: 0886-7798
Year: 2024
Volume: 153
6 . 9 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: