Indexed by:
Abstract:
Microvasculature-on-a-chip, utilizing microfluidic technology, has emerged as a significant in vitro tool for simulating both the normal and disease states of blood vessel networks. In our review, we highlight the efficacy of microfluidic platforms in accurately reproducing the microenvironment of human blood vessels. We outline a range of methodologies employed to fabricate vascular networks in vitro, focusing on the use of endothelial cells within microfluidic structures. For each method, we provide an assessment of recent examples, critically evaluating their strengths and drawbacks. Furthermore, we delve into the outlook and the innovative advancements anticipated for next-generation vascular-on-a-chip models and the broader field of chip-based tissue engineering. © 2024 Chinese Academy of Sciences. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Progress in Chemistry
ISSN: 1005-281X
Year: 2024
Issue: 6
Volume: 36
Page: 840-850
1 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: