• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dan, Qiongpeng (Dan, Qiongpeng.) | Li, Xiyao (Li, Xiyao.) | Zhang, Fangzhai (Zhang, Fangzhai.) | Du, Rui (Du, Rui.) | Li, Jialin (Li, Jialin.) | Wang, Tong (Wang, Tong.) | Zhang, Qiong (Zhang, Qiong.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻)

Indexed by:

EI Scopus SCIE

Abstract:

Achieving stable and high-rate partial nitrification (PN) remains a worldwide technical conundrum in lowstrength mainstream conditions. This study successfully achieved ultrarapid mainstream PN within 8 days under a saturated dissolved oxygen (DO) supply strategy, reaching a record-breaking PN rate of over 1.0 kg N m(- 3) d(- 1) treating municipal wastewater. Stable PN was maintained for over 200 days with an ultrahigh nitrite accumulation ratio of 98.5 +/- 0.9 %, resilient to seasonal fluctuations in temperature (16.0-25.6 degrees C) and load (NH4+-N, 40-80 mg N/L). Kinetics revealed a remarkable 159.1-fold increase in the maximum activity ratio of ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB). The faster response of AOB to saturated DO stimulated its highest activity difference with NOB, contributing to the AOB (Nitrosomonas oligotropha) boom and the elimination of NOB groups (-99.9 %). Our results highlight the importance of promoting AOB rather than solely focusing on NOB suppression for initiating and stabilizing high-rate mainstream PN.

Keyword:

Dissolved oxygen Mainstream wastewater NOB elimination Nitrite accumulation Ammonium oxidation rate

Author Community:

  • [ 1 ] [Dan, Qiongpeng]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Xiyao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Fangzhai]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Jialin]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Tong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 8 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

Year: 2024

Volume: 413

1 1 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:367/10592787
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.