Indexed by:
Abstract:
Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING
ISSN: 1534-4320
Year: 2024
Volume: 32
Page: 3636-3646
4 . 9 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 16
Affiliated Colleges: