Indexed by:
Abstract:
Achieving a high-density, repeatable, and uniform distribution of "hotspots" across the entire surface-enhanced Raman scattering (SERS) substrate is a current challenge in facilitating the efficient preparation of large-area SERS substrates. In this study, we aim to produce homogeneous surface-enhanced Raman scattering (SERS) substrates based on the strong interaction between femtosecond laser pulses and a thin film of colloidal gold nanoparticles (AuNPs). The SERS substrate we obtained consists of irregularly shaped and sharp-edged gold nanoparticle aggregates with specially extruding features; meanwhile, a large number of three-dimensional AuNP stacks are produced. The advantages of such configurations lie in the production of a high density of hotspots, which can significantly improve the SERS performance. When the laser fluence is 5.6 mJ/cm(2), the substrate exhibits the best SERS enhancement effect, and a strong SERS signal can still be observed when testing the concentration of R6G at 10(-8) mol/L. The enhancement factor of such SERS substrates prepared using femtosecond laser direct writing is increased by 3 orders of magnitude compared to the conventional furnace annealing process. Furthermore, the relative standard deviation for the intensities of the SERS signals was measured to be 5.1% over an area of 50 x 50 mu m(2), indicating a highly homogeneous SERS performance and excellent potential for practical applications.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS OMEGA
ISSN: 2470-1343
Year: 2024
Issue: 35
Volume: 9
Page: 37188-37196
4 . 1 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: