Indexed by:
Abstract:
To improve the generalizability and robustness of stochastic configuration networks (SCNs), this paper proposes a robust modeling method based on information superposition and mixture correntropy. First, the mapping information of the (sigmoid) activation function and its derivative function is superimposed, and the hidden layer parameters are randomly assigned through a supervisory mechanism to improve the diversity of the hidden layer mapping. Second, mixture correntropy is used to construct a robust loss function, and different Gaussian kernels are used to measure the contribution of training samples to suppress the negative impact of data noise on the accuracy of the model. Finally, the performance of the proposed modeling method is tested on functional approximation, four benchmark datasets, and historical data from the municipal solid waste incineration process. The experimental results show that the modeling method proposed in this paper has advantages in terms of generalizability and robustness.
Keyword:
Reprint Author's Address:
Source :
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
ISSN: 1868-8071
Year: 2024
Issue: 2
Volume: 16
Page: 1041-1054
5 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: