• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wei, Xiulan (Wei, Xiulan.) | Zhang, Yong (Zhang, Yong.) (Scholars:张勇) | Wang, Shaofan (Wang, Shaofan.) | Zhao, Xia (Zhao, Xia.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.)

Indexed by:

EI Scopus SCIE

Abstract:

Missing data in time series is a pervasive problem that serves as obstacles for subsequent traffic data analysis. Consequently, extensive research works have been conducted on traffic missing data imputation tasks. The state-of-the-art traffic data imputation models are mostly based on recurrent neural networks. However, these methods belong to autoregressive models which are highly susceptible to error propagation. The attention-based methods are non-autoregressive models that can avoid compounding errors and help achieve better imputation quality. Moreover, the attention-based methods in now widely applied and have achieved remarkable results, whereas their application on traffic data imputation is still limited. Thus, this paper proposes Self-Attention Graph Convolution Imputation Network (SAGCIN) for spatio-temporal traffic data. To ensure the accuracy of data imputation, it is necessary to fully capture the spatio-temporal contextual information of traffic data to impute missing values. To this end, the SAGCIN model incorporates self-attention mechanism with diffusion graph convolution network. The SAGCIN model consists of two spatio-temporal blocks with a spatio-temporal encoder and an imputation decoder. The encoder learns spatio-temporal representations specialized for traffic data imputation tasks. Based on the learned representation, the decoder performs two stages of imputation operator for missing data. A joint-optimization training approach of imputation and reconstruction is introduced for SAGCIN to perform missing value imputation for traffic data. Empirical results demonstrate that SAGCIN model outperforms state-of-the-art methods in imputation tasks on relevant real-world benchmarks.

Keyword:

diagonally-masked self-attention missing values diffusion graph convolution imputation model Traffic data

Author Community:

  • [ 1 ] [Wei, Xiulan]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Architecture Civil & Transportat Engn, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shaofan]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Xia]Beijing Univ Civil Engn & Architecture, Beijing Key Lab Gen Aviat Technol, Beijing 102616, Peoples R China

Reprint Author's Address:

  • [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

Year: 2024

8 . 5 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:513/10583848
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.