• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Xiang (Wang, Xiang.) | Fu, Fang-Wei (Fu, Fang-Wei.) | Konstantinova, Elena V. (Konstantinova, Elena V..)

Indexed by:

EI Scopus SCIE

Abstract:

In the combinatorial context, one of the key problems in sequence reconstruction is to find the largest intersection of two metric balls of radius r. In this paper we study this problem for permutations of length n distorted by Hamming errors and determine the size of the largest intersection of two metric balls with radius r whose centers are at distance d=2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2,3,4$$\end{document}. Moreover, it is shown that for any n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document} an arbitrary permutation is uniquely reconstructible from four distinct permutations at Hamming distance at most two from the given one, and it is proved that for any n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 4$$\end{document} an arbitrary permutation is uniquely reconstructible from 4n-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4n-5$$\end{document} distinct permutations at Hamming distance at most three from the permutation. It is also proved that for any n >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 5$$\end{document} an arbitrary permutation is uniquely reconstructible from 7n2-31n+37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7n<^>2-31n+37$$\end{document} distinct permutations at Hamming distance at most four from the permutation. Finally, in the case of at most r Hamming errors and sufficiently large n, it is shown that at least Theta(nr-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varTheta }(n<^>{r-2})$$\end{document} distinct erroneous patterns are required in order to reconstruct an arbitrary permutation.

Keyword:

Sequence reconstruction Hamming errors Permutation codes

Author Community:

  • [ 1 ] [Wang, Xiang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Fu, Fang-Wei]Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
  • [ 3 ] [Fu, Fang-Wei]Nankai Univ, LPMC, Tianjin 300071, Peoples R China
  • [ 4 ] [Konstantinova, Elena V.]Sobolev Inst Math, Ak Koptyug Ave 4, Novosibirsk 630090, Russia
  • [ 5 ] [Konstantinova, Elena V.]Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
  • [ 6 ] [Konstantinova, Elena V.]China Three Gorges Univ, Three Gorges Math Res Ctr, 8 Univ Ave, Yichang 443002, Hubei, Peoples R China

Reprint Author's Address:

  • [Wang, Xiang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

DESIGNS CODES AND CRYPTOGRAPHY

ISSN: 0925-1022

Year: 2024

Issue: 1

Volume: 93

Page: 11-37

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:844/10658727
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.