• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Wei (Wang, Wei.) (Scholars:王伟) | Wu, Yuting (Wu, Yuting.) (Scholars:吴玉庭) | Ma, Chongfang (Ma, Chongfang.)

Indexed by:

EI Scopus PKU CSCD

Abstract:

Expansion refrigeration can obtain relatively larger temperature drop, and it had the potential of utilization on industrial energy saving, such as cryogenics air separation, light hydrocarbon recovery, expansion valve replacement and mine cooling, etc. At present, lots of large-scale gas expansion refrigeration systems have been applied in many industrial fields. In many actual industrial processes, there were tremendous demands for small-scale gas expansion refrigeration units. However, those systems didn't realize commercial application due to technical and economic bottleneck. So research and development small-scale reverse Brayton cycle refrigeration system was very important to energy conservation and emission reduction for our country. In this paper, a typical process of reverse Brayton cycle refrigeration system was presented and the thermodynamic model was established, the influence factors of internal heat exchanger and the adiabatic efficiency of expanders were analyzed. From the simulation result, it was concluded that internal heat exchanger couldn't improve the coefficient of performance for entire system, but could decrease the outlet temperature of expander efficiently. With the increase of reheat temperature difference, the effect of reheat reduced. Those works can provide the theoretic basis to study on small-scale reverse Brayton cycle refrigeration system. © All Rights Reserved.

Keyword:

Heat exchangers Enthalpy Brayton cycle Emission control Screws Thermoanalysis Temperature Expansion Coefficient of performance Industrial refrigeration Cooling systems Energy conservation Mathematical models

Author Community:

  • [ 1 ] [Wang, Wei]Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wu, Yuting]Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Ma, Chongfang]Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

CIESC Journal

ISSN: 0438-1157

Year: 2014

Issue: SUPPL.1

Volume: 65

Page: 245-250

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:534/10555141
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.