Indexed by:
Abstract:
Hollow-core anti-resonant optical fiber (HC-ARF) provides solutions for breaking the bottlenecks in areas of high-power transmission and high-efficiency optical waveguide. Other than transporting light wave, HC-ARFs can synergistically combine microfluidics and optics in a single fiber with unprecedented light path length not readily achievable by planar optofluidic configurations. The unique features of strict light confinement, wide transmission band and low transmission loss of HC-ARFs enable high sensing performance with low sample consumption, outcompeting conventional optical assays. In this review, we provide a comprehensive overview of HC-ARFs for label-free molecular sensing. We deliver information on the light propagation mechanism and state-of-the-art structures of HC-ARFs, as well as recent progress in chemical and biomedical sensing mainly covering gas, liquid, DNA and protein sensors along with exosome-based liquid biopsy and cancer cell detection. At the end, challenges and prospects of HC-ARF for sensing applications are discussed. © 2024
Keyword:
Reprint Author's Address:
Email:
Source :
Sensing and Bio-Sensing Research
ISSN: 2214-1804
Year: 2024
Volume: 46
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: