Indexed by:
Abstract:
In this paper, we consider the distributed inference for heterogeneous linear models with massive datasets. Noting that heterogeneity may exist not only in the expectations of the subpopulations, but also in their variances, we propose the heteroscedasticity-adaptive distributed aggregation (HADA) estimation, which is shown to be communication-efficient and asymptotically optimal, regardless of homoscedasticity or heteroscedasticity. Furthermore, a distributed test for parameter heterogeneity across subpopulations is constructed based on the HADA estimator. The finite-sample performance of the proposed methods is evaluated using simulation studies and the NYC flight data.
Keyword:
Reprint Author's Address:
Source :
ACTA MATHEMATICA SINICA-ENGLISH SERIES
ISSN: 1439-8516
Year: 2024
Issue: 11
Volume: 40
Page: 2751-2770
0 . 7 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: