Indexed by:
Abstract:
This contribution introduces a novel framework for the first excursion probability sensitivity estimation, applicable to linear dynamic systems subject to a Gaussian excitation. The proposed methodology is based on Domain Decomposition method, and the sensitivity estimator is calculated as the partial derivative of the first excursion probability with respect to a design parameter, such as the geometrical dimensions of the system. The linearity of the system plays a key role in building an efficient estimator. Domain Decomposition Method exploits this feature by exploring the failure domain in a very convenient way due to its special structure, characterized by the union of a large number of elementary linear failure domains. This approach allows the sensitivity estimator to be derived as a byproduct of the first excursion probability estimator. The effectiveness of this technique is demonstrated through a numerical example involving a large-scale model. © 2024 Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2024
Page: 4443-4454
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: