Indexed by:
Abstract:
Deep unfolding network (DUN) is a powerful technique for image compressive sensing that bridges the gap between optimization methods and deep networks. However, DUNs usually rely heavily on single-domain information, overlooking the inter-domain dependencies. Therefore, such DUNs often face the following challenges: 1) information loss due to the inefficient representation within a single domain, and 2) limited robustness due to the absence of inter-domain dependencies. To overcome these challenges, we propose a deep unfolding framework D^3U-Net that establishes a dual-domain collaborative optimization scheme. This framework introduces both visual representations from the image domain and multi-resolution analysis provided by the wavelet domain. Such dual-domain representations constrain the feasible region within the solution space more accurately. Specifically, we design a consistency-difference collaborative mechanism to capture inter-domain dependencies effectively. This mechanism not only enhances the fidelity of reconstruction but also enriches the depth and breadth of extracted features, improving the overall robustness and reconstruction quality. Moreover, we develop an inter-stage transmission pathway to minimize the information loss during transmission while broadcasting multi-scale features in a frequency-adaptive manner. Extensive experimental results on various benchmark datasets show the superior performance of our method. © 2024 ACM.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2024
Page: 9952-9960
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: