Indexed by:
Abstract:
The optical and thermodynamic properties of aluminum oxide (Al2O3) were investigated through the density functional theory. In this paper, to examine the structural parameters the GGA-PBEsol potential was used. The Becke-Johnson (TB-mBJ) potential was applied to estimate the optical properties, and the Gibbs2 code was used to examine the thermodynamic behavior of Al2O3. The optical analysis shows that the optical properties were improved and the spectrum red-shifted occurs under high pressure. The thermodynamics behavior of the Al2O3 in temperatures ranging from 0K to 1400K and the pressure ranging from 0GPa to 60GPa were achieved using the quasi-harmonic Debye model to elucidate the relationships between thermodynamic parameters and temperature under variant pressure. The results show that the optical and thermodynamic properties of Al2O3 are significantly improved under high pressure. This enhancement suggests that Al2O3 could be used more effectively in many industrial applications, including high-performance ceramics, thermal barrier coatings and as an optical material in devices such as lasers and sensors. In addition, the findings provide important insights into the behavior of Al2O3 compounds under high-pressure environments, which could enhance material design procedures for advanced technologies.
Keyword:
Reprint Author's Address:
Email:
Source :
MODERN PHYSICS LETTERS B
ISSN: 0217-9849
Year: 2024
1 . 9 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: