Indexed by:
Abstract:
A broad-speed-range operational capability coupled with both subsonic and supersonic flight performances is a key factor for new aircraft design. The joined-wing configuration has higher bending torsional strength, lower induced resistance, larger lift coefficient, and better stability in comparison to traditional wing configuration. A new morphing joined-wing aircraft that featured a retractable wing installed in the front wing was designed in the present work to satisfy the transition between the joined-wing and box-wing configurations, thereby attaining transonic flight capability across a wide range of speeds. The simulation models of the joined-wing and box-wing configurations were built based on the JW-1 model, and the flight characteristics of the aircraft under different flow field speeds were studied based on the Spalart-Allmaras turbulence model. The effects of different parameters on the morphing aircraft under subsonic and supersonic conditions were analyzed, and the flight performance of the morphing joined-wing aircraft was compared with those of conventional aircraft wing configurations. This study provides valuable insights into the optimization of supersonic flight for the joinedwing aircraft.
Keyword:
Reprint Author's Address:
Email:
Source :
AEROSPACE SCIENCE AND TECHNOLOGY
ISSN: 1270-9638
Year: 2025
Volume: 159
5 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: