Indexed by:
Abstract:
This paper investigates a partially linear spatial autoregressive panel data model that incorporates fixed effects, constant and time-varying regression coefficients, and a time-varying spatial lag coefficient. A two-stage least squares estimation method based on profile local linear dummy variables (2SLS-PLLDV) is proposed to estimate both constant and time-varying coefficients without the need for first differencing. The asymptotic properties of the estimator are derived under certain conditions. Furthermore, a residual-based goodness-of-fit test is constructed for the model, and a residual-based bootstrap method is used to obtain p-values. Simulation studies show the good performance of the proposed method in various scenarios. For illustration, the carbon emission data from Chinese provinces and the public capital productivity data from the United States are analyzed. © 2025
Keyword:
Reprint Author's Address:
Email:
Source :
Spatial Statistics
ISSN: 2211-6753
Year: 2025
Volume: 66
2 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: