• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Si, P. (Si, P..) | Li, S. (Li, S..) | Liu, C. (Liu, C..) | Li, M. (Li, M..)

Indexed by:

Scopus

Abstract:

Intelligent reflecting surfaces (IRS) can dynamically change the wireless channel and improve the communication performance by subtly adjusting the signal reflection through a large number of low-cost passive reflecting elements, which has become the focus of wireless communication research. However, due to the addition of IRS, the whole communication system becomes more complex and the dynamics of the system is higher, making the communication system face many new challenges. With a strong data processing and adaptive ability, machine learning (ML) can constantly adapt to changing environments and needs and well cope with many challenges in communication systems. Therefore, employing ML to tackle issues in IRS-assisted communication systems has emerged as a central theme of current research. Based on this, this paper gives a systematic overview of the application of ML in IRS system. Starting with the problems existing in IRS-assisted communication system, this paper expounds and analyzes the application of ML in IRS system from four aspects: design and optimization of reflection factor, channel processing and modeling, resource allocation and management, and security enhancement, and it also discusses the advantages and future development trends and challenges of applying ML in IRS system. © 2025 Beijing University of Technology. All rights reserved.

Keyword:

reflection factor wireless communication communication security intelligent reflecting surfaces (IRS) machine learning (ML) channel resource allocation

Author Community:

  • [ 1 ] [Si P.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Si P.]Beijing Laboratory of Advanced Information Networks, Beijing, 100124, China
  • [ 3 ] [Li S.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Li S.]Beijing Laboratory of Advanced Information Networks, Beijing, 100124, China
  • [ 5 ] [Liu C.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Liu C.]Beijing Laboratory of Advanced Information Networks, Beijing, 100124, China
  • [ 7 ] [Li M.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 8 ] [Li M.]Beijing Laboratory of Advanced Information Networks, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Journal of Beijing University of Technology

ISSN: 0254-0037

Year: 2025

Issue: 1

Volume: 51

Page: 87-99

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Affiliated Colleges:

Online/Total:1217/10659281
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.