• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Peixin (Liu, Peixin.) | Lu, Hao (Lu, Hao.) | Xu, Guojing (Xu, Guojing.) | Cheng, Feng (Cheng, Feng.) | Han, Chongyu (Han, Chongyu.) | Song, Xiaoyan (Song, Xiaoyan.) (Scholars:宋晓艳)

Indexed by:

EI Scopus SCIE

Abstract:

Remarkable trade-off paradoxes widely exist among different magnetic properties of permanent magnetic alloys, especially between saturation magnetization and coercivity, largely impeding the improvement of comprehensive properties. Taking Sm-Co-based alloys as an example, this study proposed a new data-driven material design strategy to dissolve the saturation magnetization-coercivity trade-off and enhance the comprehensive magnetic properties. The machine learning approach and multi-objective optimization method were applied to establish a model for composition design and microstructure regulation to simultaneously maximize saturation magnetization and coercivity. It was found that the electronegativity of the doping element is a key feature that affects both the saturation magnetization and coercivity, and the Pareto front with appropriate alloy composition and grain size was obtained. The materials with best comprehensive magnetic properties in the optimal set were selected for experimental preparation, and the results fully verified the model predictions. The machine learning model and multi-objective optimization method established in this study break through the trade-off between saturation magnetization and coercivity of Sm-Co-based alloys, and the strategy for synergistic improvement of the mutually exclusive properties is appliable to a variety of multi-objective materials design issues.

Keyword:

Saturation magnetization Coercivity Permanent magnetic alloys Multi-objective optimization Data-driven

Author Community:

  • [ 1 ] [Liu, Peixin]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Lu, Hao]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Guojing]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 4 ] [Cheng, Feng]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Chongyu]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 6 ] [Song, Xiaoyan]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 宋晓艳

    [Lu, Hao]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China;;[Song, Xiaoyan]Beijing Univ Technol, Coll Mat Sci & Engn, State Key Lab Mat Low Carbon Recycling, MOE,Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ACTA MATERIALIA

ISSN: 1359-6454

Year: 2025

Volume: 289

9 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Affiliated Colleges:

Online/Total:942/10619325
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.