Indexed by:
Abstract:
This study investigates the network mechanisms of temporal lobe epilepsy (TLE) using MEG data, focusing on directed connectivity networks across different frequency bands. Unlike previous studies that primarily localize epileptogenic zones, this research aims to explore whole-brain network differences between left TLE (lTLE), right TLE (rTLE), and healthy controls (HCs). MEG data from 13 lTLE patients, 21 rTLE patients, and 14 HCs were source-reconstructed to 116 brain regions (AAL116). Directed Transfer Function (DTF) was used to construct directed connectivity networks, followed by networks and graph-theoretical analyses. The results indicate that, compared to HCs, TLE subjects exhibited a significant increase in average connectivity strength in the Low Gamma band. The connectivity patterns across frequency bands in TLE patients were found to be unstable. Both HC and TLE subjects demonstrated left hemisphere lateralization. In the mid-to-low frequency bands, TLE subjects showed increases in global clustering coefficient (GCC), global characteristic path length (GCPL), and local efficiency (LE) compared to HCs, which is attributed to enhanced synchronization between local brain regions in TLE subjects.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENTIFIC REPORTS
ISSN: 2045-2322
Year: 2025
Issue: 1
Volume: 15
4 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: