• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yong, Jiawang (Yong, Jiawang.) | Dong, Yiyao (Dong, Yiyao.) | Li, Wanting (Li, Wanting.) | Chen, Yanyan (Chen, Yanyan.) | Ren, Zhiwen (Ren, Zhiwen.) | Wan, Zhishuai (Wan, Zhishuai.) | Fang, Daining (Fang, Daining.)

Indexed by:

EI Scopus SCIE

Abstract:

A collaborative enhancement design method of load-bearing and vibration isolation characteristics for honeycomb meta-materials is proposed and validated by a novel quasi-chiral honeycomb meta-material (QCHM). The QCHM, which replaces the vertex of traditional diamond honeycomb mate-material (DHM) with chiral structure and introduces metal pins into the structure, is designed based on the proposed method. The static mechanical properties and vibration isolation capacities of the QCHM are analyzed through finite element method (FEM) and experiments. In comparison to conventional DHM, findings indicate that the QCHM surpasses in load-bearing capability and stiffness while exhibiting bandgaps with reduced initial frequency and expanded bandwidth. Additionally, the incorporation of particle damping further enhances the vibration attenuation and customization capacities of the QCHM. Overall, through the concept of assembly to establish a productive local resonance configuration, this investigation directs vibration energy towards the local structure and utilizes particle damping for energy dissipation, resulting in the development of honeycomb meta-materials featuring superior load-bearing capacity and broad low frequency bandgap characteristics. The proposed method offers a viable approach for optimizing the implementation of meta-materials in practical settings.

Keyword:

Bandgap Statics properties Low frequency vibration suppression capability Meta-material

Author Community:

  • [ 1 ] [Yong, Jiawang]Beijing Univ Technol, Dept Traff Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dong, Yiyao]Beijing Univ Technol, Dept Traff Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Wanting]Beijing Univ Technol, Dept Traff Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Yanyan]Beijing Univ Technol, Dept Traff Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Ren, Zhiwen]Beijing Inst Technol, Inst Adv Struct Technol, Beijing Key Lab Lightweight Multifunct Composite M, Beijing 100081, Peoples R China
  • [ 6 ] [Wan, Zhishuai]Beijing Inst Technol, Inst Adv Struct Technol, Beijing Key Lab Lightweight Multifunct Composite M, Beijing 100081, Peoples R China
  • [ 7 ] [Fang, Daining]Beijing Inst Technol, Inst Adv Struct Technol, Beijing Key Lab Lightweight Multifunct Composite M, Beijing 100081, Peoples R China
  • [ 8 ] [Wan, Zhishuai]Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Shandong, Peoples R China

Reprint Author's Address:

  • [Wan, Zhishuai]Beijing Inst Technol, Inst Adv Struct Technol, Beijing Key Lab Lightweight Multifunct Composite M, Beijing 100081, Peoples R China

Show more details

Related Keywords:

Source :

ENGINEERING STRUCTURES

ISSN: 0141-0296

Year: 2025

Volume: 333

5 . 5 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Affiliated Colleges:

Online/Total:533/10598458
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.