Indexed by:
Abstract:
The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains. © 1976-2012 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE Journal of Oceanic Engineering
ISSN: 0364-9059
Year: 2025
Issue: 2
Volume: 50
Page: 1419-1428
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: