Indexed by:
Abstract:
In this paper, a type of accurate a posteriori error estimator is proposed for semilinear Neumann problem, which provides an asymptotic exact estimate for the finite element approximate solution. As its applications, we design two types of cascadic adaptive finite element methods for semilinear Neumann problem based on the proposed a posteriori error estimator. The first scheme is based on the Newton iteration, which needs to solve a linearized boundary value problem by some smoothing steps on each adaptive space. The second scheme is based on the multilevel correction method, which contains some smoothing steps for a linearized boundary value problem on each adaptive space and a solving step for semilinear Neumann equation on a low dimensional space. In addition, the proposed a posteriori error estimator provides the strategy to refine mesh and control the number of smoothing steps for both of the cascadic adaptive methods. Some numerical examples are presented to validate the efficiency of the proposed algorithms in this paper. (C) 2019 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED MATHEMATICS AND COMPUTATION
ISSN: 0096-3003
Year: 2019
Volume: 362
4 . 0 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: