• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Sun, Xinjian (Sun, Xinjian.) | Gao, Zhen (Gao, Zhen.) | Cao, Peng (Cao, Peng.) | Zhou, Changjun (Zhou, Changjun.) | Ling, Yifeng (Ling, Yifeng.) | Wang, Xuhao (Wang, Xuhao.) | Zhao, Yawei (Zhao, Yawei.) | Diao, Mushuang (Diao, Mushuang.)

Indexed by:

EI Scopus SCIE

Abstract:

In this paper, three-point bending tests on precast notched beam and multiscale numerical simulation were used to evaluate and predict the effect of different Basalt Fiber (BF) dosages on the fracture resistance performance for Basalt Fiber Reinforced Concrete (BFRC). The three-point bending test was performed on a series of the notched beams in different sizes and volumetric fiber dosage to obtain the Load-Crack Mouth Opening Displacement (P-CMOD) curves during the loading process. The fracture energy and the double-K fracture parameters were calculated from P-CMOD curves to investigate the influences of fiber volume fraction and beam size on fracture parameters of BFRC. The results indicate that the numerical simulation results are in good coherence with the experimental results. The increase of BF dosage could markedly increase the peak load and the fracture energy of concrete. There was no size effect on fracture energy. Based on the two-parameter fracture theory, the initiation toughness had size effect and increased with the rise of specimen height, while size effect was not significant for unstable toughness. With the augment of fiber dosage, the initiation toughness increased linearly. The unstable toughness varied irregularly with the alteration of fiber dosage but higher than that of ordinary concrete. In addition, this paper developed a homogenization algorithm based on Mori-Tanaka and a multi-scale finite element simulation based on continuum progressive damage theory to evaluate and predict the fracture behavior of BFRC with different sizes and fiber volumetric dosages. The calculated P-CMOD curves from this algorithm were in good agreement with those from experiments and revealed the effects of fiber dosage and size effect on fracture behavior for BFRC. (C) 2019 Published by Elsevier Ltd.

Keyword:

BFRC Three-point bending Size effect Numerical simulation Fracture performance

Author Community:

  • [ 1 ] [Sun, Xinjian]Qinghai Univ, Sch Hydraul & Elect Engn, Xining, Qinghai, Peoples R China
  • [ 2 ] [Gao, Zhen]Qinghai Univ, Sch Hydraul & Elect Engn, Xining, Qinghai, Peoples R China
  • [ 3 ] [Zhao, Yawei]Qinghai Univ, Sch Hydraul & Elect Engn, Xining, Qinghai, Peoples R China
  • [ 4 ] [Diao, Mushuang]Qinghai Univ, Sch Hydraul & Elect Engn, Xining, Qinghai, Peoples R China
  • [ 5 ] [Cao, Peng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China
  • [ 6 ] [Sun, Xinjian]State Key Lab Plateau Ecol & Agr, Xining, Qinghai, Peoples R China
  • [ 7 ] [Zhou, Changjun]Dalian Univ Technol, Sch Transportat & Logist, Dalian, Peoples R China
  • [ 8 ] [Ling, Yifeng]Iowa State Univ, Inst Transportat, Natl Concrete Pavement Technol Ctr, Ames, IA USA
  • [ 9 ] [Wang, Xuhao]Changan Univ, Sch Highway, Xian, Shaanxi, Peoples R China

Reprint Author's Address:

  • [Cao, Peng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China

Show more details

Related Keywords:

Source :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

Year: 2019

Volume: 225

Page: 788-800

7 . 4 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:211

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 94

SCOPUS Cited Count: 104

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:1270/10572491
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.