• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Gao, Jie (Gao, Jie.) | Lyu, Yan (Lyu, Yan.) | Zheng, Mingfang (Zheng, Mingfang.) | Liu, Mingkun (Liu, Mingkun.) | Liu, Hongye (Liu, Hongye.) | Wu, Bin (Wu, Bin.) | He, Cunfu (He, Cunfu.) (Scholars:何存富)

Indexed by:

EI Scopus SCIE

Abstract:

This research presents a numerical method to analyze the propagation characteristics of guided waves in multilayered anisotropic composite laminates. The dispersion equations were derived theoretically, while the displacement and stress components of each layer are expressed in the form of state vectors, by combining the state-vector formalism and the Legendre polynomials (SVF-LP). The displacement fields are fitted approximately by Legendre polynomials, and the system of linear equations are constructed by the orthogonal projection. The eigenvalue/eigenvector solution is established to compute the phase dispersion curves instead of solving the transcendental dispersion equations. This overcomes the problem of missing roots in traditional matrix method effectively. In order to verify the robustness of the SVF-LP, three cases of multi-layered laminates, formed by isotropic material, unidirectional carbon-fiber epoxy prepreg and fiber-metal laminate (GLARE 3-3/2) are investigated, respectively. The influences of fiber angle change and the stacking sequence are primarily analyzed, on the dispersion characteristics and the displacement and stress profiles. The matrix method is also carried out to compare the accuracy of this proposed method, which is done by the commercial software Disperse. Finally, the displacement and stress profiles of fundamental modes of the guided waves in an arbitrary lay-up quasi-isotropic plate at a given frequency is discussed in details.

Keyword:

Legendre orthogonal polynomials Guided waves Displacement and stress profiles Anisotropic composite laminates Dispersion curves

Author Community:

  • [ 1 ] [Gao, Jie]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 2 ] [Lyu, Yan]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 3 ] [Liu, Mingkun]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 4 ] [Wu, Bin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 5 ] [He, Cunfu]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 6 ] [Zheng, Mingfang]Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
  • [ 7 ] [Liu, Hongye]Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Jungong Rd 580, Shanghai 200093, Peoples R China

Reprint Author's Address:

  • [Lyu, Yan]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China

Show more details

Related Keywords:

Source :

COMPOSITE STRUCTURES

ISSN: 0263-8223

Year: 2019

Volume: 228

6 . 3 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:211

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 28

SCOPUS Cited Count: 31

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Online/Total:913/10623191
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.