Indexed by:
Abstract:
This paper mainly contributes to a classification of statistical Einstein manifolds, namely statistical manifolds at the same time are Einstein manifolds. A statistical manifold is a Riemannian manifold, each of whose points is a probability distribution. With the Fisher information metric as a Riemannian metric, information geometry was developed to understand the intrinsic properties of statistical models, which play important roles in statistical inference, etc. Among all these models, exponential families is one of the most important kinds, whose geometric structures are fully determined by their potential functions. To classify statistical Einstein manifolds, we derive partial differential equations for potential functions of exponential families; special solutions of these equations are obtained through the ansatz method as well as group-invariant solutions via reductions using Lie point symmetries. (C) 2019 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 0022-247X
Year: 2019
Issue: 2
Volume: 479
Page: 2104-2118
1 . 3 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: