• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

He, Pengchen (He, Pengchen.) | Xie, Yabo (Xie, Yabo.) (Scholars:谢亚勃) | Dou, Yibo (Dou, Yibo.) | Zhou, Jian (Zhou, Jian.) (Scholars:周剑) | Zhou, Awu (Zhou, Awu.) | Wei, Xin (Wei, Xin.) | Li, Jian-Rong (Li, Jian-Rong.) (Scholars:李建荣)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

A feasible strategy for the in situ growth of two-dimensional (2D) [Ni-3(OH)(2)(1,4-BDC)(2)-(H2O)(4)]center dot 2H(2)O (Ni-BDC; 1,4-BDC = 1,4-benzenedicarboxylate) and the subsequent partial sulfurization treatment for the decoration of nickle sulfide (NiS) is developed. The fabricated hierarchically structured Ni-BDC@NiS as a synergistic electrocatalyst shows extremely high activity toward the oxygen evolution reaction (OER). The optimal Ni-BDC@NiS catalyst acquires a current density of 20 mA cm(-2) at a lower overpotential of 330 mV and low Tafel slope of 62 mV dec(-1), outperforming most previously reported Ni-based sulfide catalysts. Clearly, the combination of the NiS and Ni-BDC array contributed to the improvement of electron transfer, promotion of water adsorption, and increase of rich active species. In addition, the in situ created hierarchical structure not only affords feasible access for mass transport but also strengthens structural integrity, contributing to efficient and stable OER performance. This general and effective strategy anchoring conductive active species on a porous metal-organic framework (MOF) thus provides an efficient way to fabricate synergistic electrocatalysts for the OER.

Keyword:

metal-organic frameworks (MOFs) oxygen evolution reaction electrocatalysis hierarchical structure partial sulfurization

Author Community:

  • [ 1 ] [Dou, Yibo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Dou, Yibo]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jian-Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jian-Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 李建荣

    [Dou, Yibo]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;[Li, Jian-Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ACS APPLIED MATERIALS & INTERFACES

ISSN: 1944-8244

Year: 2019

Issue: 44

Volume: 11

Page: 41595-41601

9 . 5 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:211

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 106

SCOPUS Cited Count: 115

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:1097/10537983
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.